
UO-LISP NEWSLETTER

+---+ I April 1985 Vol. 2 No. 2 I
+---+

Please accept our apologies for the lateness of this issue.
Your July issue should be on .time. We hope you like the new
print of the newsletter, as we have just purchased a Hewlett
Packard Laserjet printer with which we will be augmenting the
print quality of all our documentation.

Version 3.1 Announced

Northwest Computer Algorithms takes pleasure in announcing
Version 3.1 of UO-LISP for the IBM-PC computer and compatibles.
Version 3.1 is a major enhancement of Version 3.0 featuring
larger data spaces and additional functionality. This includes:

• 16k free pairs (8k in V3.0)

• 16k bytes of string space (8k in V3.0)

• Small integers in the range -8192 and 8191

• The Little Meta Translator Writing System

• A compiler option for open coding commonly used functions
such as the CAR and CDR composites, small integer
arithmetic, and some predicates.

• The MAPOBL function scans the identifier table applying a
user supplied function to each symbol.

UO-LISP Version 3.1 requires a minimum of 256k bytes of main
storage and PC-DOS 1.1 and higher, or MS-DOS 2.0 and later. The
system is source code compatible with Version 3.0 and Version
1.16 (the CP/M version).

2
Simulation Using the Simple Objects Package

In last months news letter, we presented a
programming system. In this issue
functionality to the objects package and
with a simple simulation of a number
objects.

simple object based
we add additional
demonstrate its use
of moving interacting

From the last issue, recall that there are a number of
built-in behaviors: GET!-YOUR, SET!-YOUR and so on. We now add a
behavior to destroy an instance of an object. This function
simply removes any properties associated with the object system.

+---+
(METHOD ROOT KILLYOURSELF ()
% Remove all object properties associated with SELF.

(REMPROP SELF 'SUPERCLASSES)
(REMPROP SELF 'VARIABLES)

I (REMPROP SELF 'CLASS))
+---+

During the course of a long simulation hundreds of objects may
be created. KILLYOURSELF frees up storage allocated to an object
when it is no longer in use. Since KILLYOURSELF resides at the
ROOT of the hierarchy, the behavior can remove any object.

Most simulations require dynamic object creation. The
INSTANCE declaration is ill suited to this purpose, hence we
introduce an analogous construct, MAKE, for constructing objects
at run time. Like INSTANCE, MAKE constructs an object instance
but with the added twist that the object's class and name can be
computed at run time. The INSTANCE declaration automatically
quotes the objects name and class.

+---+
(DEFMACRO MAKE (cname iname • vars)
% Construct an object instance. This function has the exact
% same arguments as INSTANCE, but cname and iname are
% computed at run time.

1 (PROG (tmp)
(SETQ tmp ,iname)
(PUT tmp 'VARIABLES

(COLLECTVARS (LIST ,cname)
(FOR (IN x •,vars)

(COLLECT (CONS (CAR x) (EVAL (CDR X)))))))
(PUT tmp 'CLASS (LIST ,cname))
(RETURN tmp)))

+---+
You should add these two procedures to the objects package

listed in the previous issue.

The
moving

following
objects of

program simulates interactions among some
different types. So that you can understand

3
the interactions better, I've called these Aliens and Bullets.
Each of these is a type of MovingObject the topmost class is our
hierarchy. Basically:

/---------------\
I MovingObject I
\---------------/

I I \
I I \

I I \
/--------\ I /---------\
I Aliens I I I Bullets I
\--------/ I \---------/

An Explosion
different than
MovingObjects
follows:

I
/------------\
I Explosions I
\------------/

is another moving object. Though its behavior is
that of Aliens and Bullets we attach it to
for convenience. This class hierarchy is coded as

+---+ (CLASS MovingObjects (ROOT)
% MovingObjects have a location and velocity.

(Xloc • O) % Initial X location * 10.
(Yloc • O) % Initial Y location * 10.
(Xvel . O) % Initial X velocity * 10.
(Yvel • O) % Initial Y velocity * 10.

(CLASS Explosion (MovingObjects)
% An explosion has a location, state (changes with time)
% and picture.

(Xloc • O)
(Yloc • O)
(State . O)
(Picture • NIL))

% Y Location * 10.
% Y Location * 10.
% Explosion state.
% Explosion picture.

(CLASS Aliens (MovingObjects)
% An alien is a MovingObject with a 4 character picture.

(Picture • ((-1 o <) (O o *) (1 o >) (O 1 "))))

(CLASS Bullets (MovingObjects)
% A bullet is a moving @ sign.

(Picture • ((0 O !@))))
+---+

MovingObjects have only one common procedure. The object erases
its previous screen image by writing blanks at all its locations
and then gets drawn at a new location. As you can see from

't
above, each object has a picture associated with it. The picture
is a list of 3 element lists. The first two elements of each
picture element are x and y coordinates relative to the center
of the object at which to display the third element of the list;
a character. The CLIPW routine displays a single character at
coordinates x and y provided that x and y lie within the screen
boundary.

+---+
% Load the terminal package if not present.
(COND ((NOT (GETD 'CURSOR)) (FLOAD "TERMINAL")))

(GLOBAL '(TERM!-MAXX TERM!-MAXY))

(DE CLIPW (x y c)
% Write a character c at location x y unless it's off
% the screen.

(IF (NOT (OR (MINUSP x) (GREATERP x TERM!-MAXX)
(MINUSP y) (GREATERP y TERM!-MAXY))) THEN

(CURSOR x y)
(PRIN2 c)))

+---+
We now provide two routines: one to erase an object by drawing
blanks over it, and the other to display it in a new position.

+---+ (METHOD MovingObjects EraseYourself ()
% Clear an objects screen representation.

(PROG (lx ly)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(FOR (IN pos (SEND SELF 1 GET!-YOUR 'Picture))

(DO (CLIPW (PLUS lx (CAR pos))
(PLUS ly (CADR pos)) " ")))))

(METHOD MovngObjects DrawYourself ()
% Draw an object on the screen.

(PROG (lx ly)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(FOR (IN pos (SEND SELF 1 GET1-YOUR 'Picture))

(DO (CLIPW (PLUS lx (CAR pos))
(PLUS ly (CADR pos))
(CADDR pos))))))

+---+
The controlling routine, MoveYourself, first erases the object
currently on the screen, then updates its position based on its
current velocity, and then draws the object at its new location.
The key fact to notice is that the MoveYourself routine can be
used by all moving objects: in this program, both Aliens and
Bullets both use this routine to update their positions.

+---~
(METHOD MovingObjects MoveYourself ()
% Move an object by clearing it from the screen,
% updating its position, and then redrawing it.

(SEND SELF 'EraseYourself)
(SEND SELF 'SET!-YOUR 'Xloc

(PLUS (SEND SELF 'GET!-YOUR 'Xloc)
(SEND SELF 'GET!-YOUR 'Xvel)))

(SEND SELF 'SET!-YOUR 'Yloc
(PLUS (SEND SELF 'GET!-YOUR 'Yloc)

(SEND SELF 'GET!-YOUR 'Yvel)))
(SEND SELF 'DrawYourself))

+---+
While both Bullets and Aliens move around on the screen, they
have slightly different behaviors. A bullet disappears when it
goes off the screen. We let the Alien decide what happens when
it's hit by a bullet rather than the other way around. To keep
track of what bullets are active, we keep a list of active
object names for each type of object. Thus, when a bullet goes
off the screen, it both deletes its instance data structure
(using the KILLYOURSELF behavior) and removes the instance name
from the list of active bullets.

+---+ % Lists of currently active objects.
(GLOBAL '(Bullets Aliens Explosions))

(METHOD Bullets ChangeYourself ()
% If the bullet goes off the screen, erase its object from
% the list of active bullets.

(PROG (lx ly)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETO ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(IF (OR (MINUSP lx) (GREATERP lx TERM!-MAXX)

(MINUSP ly) (GREATERP ly TERM!-MAXY)) THEN
(SEND SELF 'EraseYourself)
(SEND SELF 'KILLYOURSELF)
(SETQ Bullets (DELETE SELF Bullets)))))

+---+
In addition to running off the screen and disappearing, Aliens
are destroyed by bullets. The collission results in an explosion
and disappearance of both objects. In the following code
segment, if the alien being examined is sufficiently close to
any bullet on the screen, it destroys both objects and signals
that an explosion should take place at the point of
intersection.

+---+
(METHOD Aliens ChangeYourself ()
% If an alien runs off the screen, then remove it. If it
% runs into a bullet then start an explosion.

(PROG (lx ly blowup)
(SETQ lx (QUOTIENT (SEND SELF 'GET!-YOUR 'Xloc) 10))
(SETQ ly (QUOTIENT (SEND SELF 'GET!-YOUR 'Yloc) 10))
(IF (OR (MINUSP lx) (GREATERP lx TERM!-MAXX)

(MINUSP ly) (GREATERP ly TERM!-MAXY)) THEN
(SEND SELF 'EraseYourself)
(SEND SELF 1 KILLYOURSELF)
(RETURN (SETQ Aliens (DELETE SELF Aliens))))

(FOR (IN b Bullets)
(WHEN

(AND
(EQUAL lx

(QUOTIENT (SEND b 'GET!-YOUR 'Xloc) 10))
(EQUAL ly

(QUOTIENT (SEND b 'GET!-YOUR 'Yloc) 10))))
(DO (SEND b 'EraseYourself)

(SEND b 'KILLYOURSELF)
(SETQ Bullets (DELETE b Bullets))
(SETQ blowup T)))

(IF blowup THEN
(SEND SELF 1 EraseYourself)
(SETQ Explosions

(CONS
(MAKE 'Explosion (SETQ blowup {GENSYM)))
Explosions))

(SEND blowup 'SET!-YOUR 'Xloc
(SEND SELF 'GET!-YOUR 'Xloc))

(SEND blowup 'SET!-YOUR 'Yloc
(SEND SELF 'GET!-YOUR 'Yloc))

(SEND SELF 'KILLYOURSELF)
(SETQ Aliens (DELETE SELF Aliens)))))

+---+
An explosion is scheduled by the Alien ChangeYourself behavior.
An explosion is a sequence of two different pictures that are
done during each simulation step. The object variable State
associated with each explosion tells which of the two pictures
to display and when to terminate the explosion.

7
+---+

(METHOD Explosion Nextstate ()
% Change an explosion to the next state.

(PROG (state)
(SETQ state (SEND SELF 'GET!-YOUR 'State))
(IF (ZEROP state) THEN

(SEND SELF 'SET!-YOUR 'Picture
•cc-1 o -> c-1 1 !.) co 1 I> Cl 1 !.) Clo->

(1 -1 !.) co -1 I> c-1 -1 !.)))
(SEND SELF 'SET!-YOUR 'State 1)
(SEND SELF 'DrawYourself)

ELSEIF (ONEP state) THEN
(SEND SELF 'EraseYourself)
(SEND SELF 'SET!-YOUR 'Picture

1 ((-2 o -> co f I) (2 o -) co -2 I>>>
(SEND SELF 'SET!-YOUR 'State 2)
(SEND SELF 'DrawYourself)

ELSEIF (EQUAL state 2) THEN
(SETQ Explosions (DELETE SELF Explosions))
(SEND SELF 'EraseYourself)
(SEND SELF 'KILLYOURSELF)))) I

+---+
The top level driver completes the simulation. It clears the
screen and runs the simulation until no more objects are active
and then stops.

+---+ (DE RunTheScreen ()
% Run the screen until no more objects are visible.

(LINELENGTH 0)
(CLEAR)
(WHILE (OR Aliens Bullets Explosions)

(DO (FOR (IN 0 (APPEND Bullets Aliens))
(DO (SEND o 'MoveYourself)

(SEND o 'ChangeYourself)))
(FOR (IN o Explosions)

(DO (SEND 0 'Nextstate))))))
+---+

To run the simulation we create an instance of an alien and a
bullet headed at each other. We put the names of these instances
on the appropriate lists so the top level loop changes their
states at the appropriate times.

+---+ % Put two objects on the screen and let them go at it.
(SETQ Aliens

(LIST (INSTANCE Aliens Al
(Xloc • 300)
(Yloc • 120)
(Xvel . 5)
(Yvel • 0))))

(SETQ Bullets
(LIST (INSTANCE Bullets Bl

(Xloc • 400)
(Yloc • 120)
(Xvel • -6)
(Yvel . 0))))

I
(RunTheScreen) I

+---+

g

The initial screen configuration should
The two objects "rush" at each other
explosion, only, if you haven't compiled
be in any great hurry.

resemble the following.
and disappear in an

the program, they won't

+---+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

<*> @

then

• I •
->

• I •

I I
+---+

Finally, we demonstrate a more complex example, one with four
initial objects aimed at each other but with anhilation
scheduled at different times.

+---+ % Now Put 4 objects on the screen.
(SETQ Aliens (LIST

(INSTANCE Aliens Al
(Xloc • 100) (Yloc 100) (Xvel • 5) (Yvel . 0))

(INSTANCE Aliens A2
(Xloc . 200) (Yloc 200) (Xvel . 6) (Yvel . -6))))

(SETQ Bullets (LIST
(INSTANCE Bullets Bl

(Xloc • 205) (Yloc 100) (Xvel • -5) (Yvel . 0))
(INSTANCE Bullets B2

(Xloc • 250) (Yloc 150) (Xvel • -5) (Yvel . 5))))
(RunTheScreen)

+---+

Institute of Artificial Intelligence

The Institute of Artificial Intelligence is sponsoring a
summer training program for workers in the field of Artificial
Intelligence. Their brochure states:

"The Institute of Artificial Intelligence is a permanent,
fully independent repository of AI experience, learning and
research. Its primary goal is in-depth education and training
of functional AI practitioners, such as knowledge engineers,
project managers, and AI system programmers. The Institute is
affiliated with Harvey Mudd College, the prestigious
engineering and science school of the Claremont Colleges."

The Institute can be reached at (213)-201-0106 or

The Institute of Artificial Intelligence
1888 Century Park East, Suite 1207
Los Angeles, California

90067-1716

Classes commence June 24, 1985.

JO

UO-LISP Version Number Changes

Northwest Computer Algorithms has renumbered the versions of
UO-LISP to simplify ordering and communication with our users.
UO-LISP Version 1 is for the older TRS-80 systems, Version 2 for
the Z80 CP/M systems, and Version 3 for the 8086 family. Each
version is futher specified by a release number, and, for the
Version 3 group, still further by a modification number. The
following table gives the current versions and numbers:

Version Current CPU Operating
Name Release Family System(s) ------- ------- ------ ---------

Vl Vl.5B Z80 TRSDOS

V2 V2.16 Z80 CP/M 2.2

V3 V3.0.03 8086 PC-DOS, MS-DOS

The old version CP/M system Vl.16 is now called V2.16. NOTE: The
(BLS.l) style configuration is no longer sold. However,
purchasers of this configuration can buy the new Version 2 at
less than the total price of the add-ons of the previous system.

New Product Configurations

To streamline mail-order distribution, we have simplified UO-LISP
packaging and ordering. The following package pricing applies as
of July 1, 1985:

UO-LISP Vl
Little Meta Vl

UO-LISP V2
Learn Lisp V2
Little Meta V2
UO-LISP V2 with Lisp

Tutorial Support

UO-LISP V3
Learn Lisp V3
Little Meta V3
UO-LISP V3 with Lisp

Tutorial support

Reference Manual V3
Reference Manual V2
Reference Manual Vl
Tutorial Guide
Newsletter 1 Year
Back issues

$80.00
$40.00

$125.00
$85.00
$80.00

$160.00

$150.00
$85.00
$80.00

$185.00

$30.00
$30.00
$20.00
$15.00
$12.00

$3.00

